


3.1 Transmission electron microscopy negative staining observation




1. Actis, P., Maalouf, MM, Kim, HJ, Lohith, A., Vilozny, B., Seger, RA, and Pourmand, N. (2014). Compartmental genomics in living cells revealed by single-cell nanobiopsy. ACS Nano 8, 546–553.
2. Amara, A., and Mercer, J. (2015). Viral apoptotic mimicry. Nat. Rev. Microbiol. 13, 461–469.
3. Bengtsson, M., Sta° hlberg, A., Rorsman, P., and Kubista, M. (2005). Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res. 15, 1388–1392.
4. Bertrand, R., Solary, E., O'Connor, P., Kohn, KW, and Pommier, Y. (1994). Induction of a common pathway of apoptosis by staurosporine. Exp. Cell Res. 211, 314 –321.
5. Cai, X., Evrony, GD, Lehmann, HS, Elhosary, PC, Mehta, BK, Poduri, A., and Walsh, CA (2014). Single-cell, genome-wide sequencing identification clonal somatic copy-number Variation in the human brain. Cell Rep. 8, 1280–1289.
6. Grindberg, RV, Yee-Greenbaum, JL, McConnell, MJ, Novotny, M., O'Shaughnessy, AL, Lambert, GM, Arau Ì zo-Bravo, MJ, Lee, J., Fishman, M., Robbins , GE, et al. (2013). RNA-sequencing from single nuclei. Proc. Natl. Acad. Sci. USA 110, 19802–19807.
7. Guillaume-Gentil, O., Potthoff, E., Ossola, D., Do ̈ rig, P., Zambelli, T., and Vorholt, JA (2013). Force-controlled fluidic injection into single cell nuclei. Small 9, 1904–1907.
8. Guillaume-Gentil, O., Potthoff, E., Ossola, D., Franz, CM, Zambelli, T., and Vorholt, JA (2014). Force-controlled manipulation of single cells: from AFM to FluidFM. Trends Biotechnol. 32, 381–388.
9. Hashimshony, T., Wagner, F., Sher, N., and Yanai, I. (2012). CEL-Seq: singlecell RNA-Seq by multiplexed linear amplification. Cell Rep. 2, 666–673.
10. Jiang, L., Schlesinger, F., Davis, CA, Zhang, Y., Li, R., Salit, M., Gingeras, TR, and Oliver, B. (2011). Synthetic spike-in standards for RNA-seq experiments. Genome Res. 21, 1543–1551.
11. Kovarik, ML, and Allbritton, NL (2011). Measuring enzyme activity in single cells. Trends Biotechnol. 29, 222–230.
12. Kuipers, MA, Stasevich, TJ, Sasaki, T., Wilson, KA, Hazelwood, KL, McNally, JG, Davidson, MW, and Gilbert, DM (2011). Highly stable loading of Mcm proteins onto chromatin in living cells Requires replication to unload. J. Cell Biol. 192, 29–41.
13. Liebherr, RB, Hutterer, A., Mickert, MJ, Vogl, FC, Beutner, A., Lechner, A., Hummel, H., and Gorris, HH (2015). Three-in-one enzyme assay based On single molecule detection in femtoliter arrays. Anal. Bioanal. Chem. 407, 7443–7452.
14. Lo, SJ, and Yao, DJ (2015). Get to understand more from single-cells: current studies of microfluidic-based techniques for single-cell analysis. Int. J. Mol. Sci. 16, 16763–16777.
15. Meister, A., Gabi, M., Behr, P., Studer, P., Vo ̈ ro ̈ s, J., Niedermann, P., Bitterli, J., Polesel-Maris, J., Liley, M., Heinzelmann, H., and Zambelli, T. (2009). FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett. 9, 2501–2507.
16. Nagaraj, N., Wisniewski, JR, Geiger, T., Cox, J., Kircher, M., Kelso, J., Pa ̈ a ̈ bo, S., and Mann, M. (2011). Deep Proteome and transcriptome mapping of a human cancer cell line. Mol. Syst. Biol. 7, 548.
17. Nawarathna, D., Turan, T., and Wickramasinghe, HK (2009). Selective probing of mRNA expression levels within a living cell. Appl. Phys. Lett. 95, 83117. O'Huallachain, M., Karczewski, KJ, Weissman, SM, Urban, AE, and Snyder, MP (2012). Extensive genetic variation in somatic human tissues. Proc. Natl. Acad. Sci. USA 109, 18018–18023.
18. Osada, T., Uehara, H., Kim, H., and Ikai, A. (2003). mRNA analysis of single living cells. J. Nanobiotechnology 1, 2.
19. Pfeiffer-Guglielmi, B., Dombert, B., Jablonka, S., Hausherr, V., van Thriel, C., Scho ̈ bel, N., and Jansen, RP (2014). Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons. BMC Neurosci. 15, 70.
20. Picelli, S., Faridani, OR, Bjo ̈ rklund, AK, Winberg, G., Sagasser, S., and Sandberg, R. (2014). Full-length RNA-seq from single cells using Smartseq2. Nat. Protoc. 9, 171–181.
21. Raj, A., Peskin, CS, Tranchina, D., Vargas, DY, and Tyagi, S. (2006). Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309.
22. Ramsko ̈ ld, D., Luo, S., Wang, YC, Li, R., Deng, Q., Faridani, OR, Daniels, GA, Khrebtukova, I., Loring, JF, Laurent, LC, et Al. (2012). Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782.
23. Rissin, DM, Kan, CW, Campbell, TG, Howes, SC, Fournier, DR, Song, L., Piech, T., Patel, PP, Chang, L., Rivnak, AJ, et al. (2010 Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599.
24. Rondelez, Y., Tresset, G., Tabata, KV, Arata, H., Fujita, H., Takeuchi, S., and Noji, H. (2005). Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nat. Biotechnol. 23, 361–365.
25. Saha-Shah, A., Weber, AE, Karty, JA, Ray, SJ, Hieftje, GM, and Baker, LA (2015). Nanopipettes: probes for local sample analysis. Chem. Sci. 6, 3334–3341 .
26. Sarkar, A., Kolitz, S., Lauffenburger, DA, and Han, J. (2014). Microfluidic probe for single-cell analysis in adherent tissue culture. Nat. Commun. 5, 3421.
27. Schmid, A., Kortmann, H., Dittrich, PS, and Blank, LM (2010). Chemical and biological single cell analysis. Curr. Opin. Biotechnol. 21, 12–20.
28. Tang, F., Barbacioru, C., Nordman, E., Li, B., Xu, N., Bashkirov, VI, Lao, K., and Surani, MA (2010). RNA-Seq analysis to capture The transcriptome landscape of a single cell. Nat. Protoc. 5, 516–535.
29. Taniguchi, K., Kajiyama, T., and Kambara, H. (2009). Quantitative analysis of gene expression in a single cell by qPCR. Nat. Methods 6, 503–506.
30. Van Gelder, RN, von Zastrow, ME, Yool, A., Dement, WC, Barchas, JD, and Eberwine, JH (1990). Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci USA 87, 1663–1667.
31. Veyer, DL, Maluquer de Motes, C., Sumner, RP, Ludwig, L., Johnson, BF, and Smith, GL (2014). Analysis of the anti-apoptotic activity of four vaccinia virus proteins demonstrates that B13 is The most potent inhibitor in isolation and during viral infection. J. Gen. Virol. 95, 2757–2768.
32. Wachsmuth, M., Weidemann, T., Mu ̈ ller, G., Hoffmann-Rohrer, UW, Knoch, TA, Waldeck, W., and Langowski, J. (2003). Analyzing intracellular binding and diffusion with continuous Fluorescence photobleaching. Biophys. J. 84, 3353–3363.
33. Wang, D., and Bodovitz, S. (2010). Single cell analysis: the new frontier in 'omics'. Trends Biotechnol. 28, 281–290.
34. Wasilenko, ST, Stewart, TL, Meyers, AF, and Barry, M. (2003). Vaccinia virus encodes a previously uncharacterized mitochondrial-associated inhibitor of apoptosis. Proc. Natl. Acad. Sci. USA 100, 14345–14350 .
35. Weis, K. (2003). Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441–451.
36. Wu, M., and Singh, AK (2012). Single-cell protein analysis. Curr. Opin. Biotechnol.23, 83–88.
37. Zhao, L., Kroenke, CD, Song, J., Piwnica-Worms, D., Ackerman, JJ, and Neil, JJ (2008). Intracellular water-specific MR of microbead-adherent cells: the HeLa cell intracellular Water exchange lifetime. NMR Biomed. 21, 159–164.
Swiss Cytosurge FluidFM BOT multi-function single-cell microscopy operating system: http://?id=469
Quantum Design China subsidiary landline | Mobile phone mailbox:
Electronic touch screen Safe Box is a safe storage device that uses a touch screen interface for easy access and management. It is designed to protect the safety of valuables, important documents and personal belongings.
The characteristics of electronic touch screen safe box may include: 1; Touch screen interface: safe box is equipped with touch screen display, which can input passwords or access various functions. 2. Safe locking mechanism: safe box electronic lock system is adopted, password or biometric authentication (such as finger print or facial recognition) is required to open it. 3. Multi-user access: some touch screen safe box allow multiple users to have their own unique passwords or biometric profiles for personal access. 4. Alarm system: if you enter an incorrect password multiple times or someone tries to tamper with the safe box, an alarm will be triggered. Emergency backup access: in the event of forgetting the password or failing, some safe box have backup keys or secondary access methods in case of emergency.6. Internal organization: Electronic Safe may have adjustable or movable shelves, compartments or partitions to help effectively organize and store different articles. 7. Battery Power supply: safe box are generally powered by batteries, and the normal operation of the safe box can be ensured even if the power is cut off. 8. Installation options: safe box may have pre-drilling or hardware installation to safely install on the wall or floor. In general, electronic touch screen safe box provide convenient, safe and secure protection for individuals or enterprises to protect their valuable property.
Touch Screen Safe Box,Jewelry Storage Box,Touch Screen Fingerprint Safe,Touch Screen Electronic Safe,Fingerprint Touch Screen money safe
Hebei Hupai Aodi Cabinet Industry Co.,Ltd. , https://www.aodicabinet.com